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Global linear stability analysis of thin
aerofoil wakes
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We investigate the global linear stability properties of the quasi-parallel flow in
the neighbourhood of the trailing edge of a thin aerofoil, using a WKBJ/multiple
scales formulation in the limit of large Reynolds number, as originally developed by
Monkewitz, Huerre & Chomaz. We show that the wake is globally linearly unstable
to second order in the asymptotic expansion parameter at all Reynolds numbers
provided the effective adverse pressure gradient at the trailing edge, which is related
to the aerofoil thickness distribution, is sufficiently large. For smaller adverse pressure
gradients, there exists a critical Reynolds number above which the flow is globally
linearly unstable, but below which it is globally stable. An asymptotic analysis for
large wavenumber indicates that the double Blasius profile, corresponding to a zero
adverse pressure gradient, may be absolutely unstable.

1. Introduction
The problem of wake-flow instability behind a flat plate has been treated many

times, with a variety of analytical and numerical techniques. Previously, some at-
tempts have been made to model the behaviour using convenient analytical profiles
(Mattingly & Criminale 1972), for example the Gaussian or sech2 wake, and this
approach can often give quite accurate results, particularly for relatively thick plates
with blunt trailing edges. However, in the case of a thin aerofoil in zero or small
adverse pressure gradients, the qualitative instability characteristics are very sensitive
to the exact shape of the velocity profiles close to the trailing edge, and the stability
analysis should be performed on the correct wake profiles. This was recognized by
Papageorgiou & Smith (1989), who solved the temporal and spatial linear instability
problems for the flat-plate case, both numerically for order-one growth rates and using
asymptotic analysis for the small- and large-wavenumber cases. As they point out,
“...a combined stability problem involving both complex frequency and wavenumber
is in principle possible.” Their results correspond closely with the experimental re-
sults of, amongst others, Sato & Kuriki (1961) and Mattingly & Criminale (1972).
In both these experiments the instability was forced by loudspeaker excitation
of the flow and, given the presence of the sharp trailing, the spatial analysis of
Papageorgiou & Smith (1989) is clearly appropriate.

In order to investigate unforced, or self-excited, oscillations, we must turn instead
to the theory of absolute instability and global modes, as discussed by, for exam-
ple, Monkewitz, Huerre & Chomaz (1993, from here on referred to as MHC93)
and Huerre & Monkewitz (1990). Here we attempt to solve the unforced instability
problem for an aerofoil wake by studying the temporal and spatial evolution of
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a delta-function perturbation to the original steady flow. We thus hope to discover
whether an initial perturbation to the flow decays, leaving the flow in its original state,
or grows exponentially, leading to eventual nonlinear evolution of the perturbation,
and a global change in the structure of the flow to Kármán vortex shedding.

Following MHC93 we formulate the problem as a streamwise eigenvalue problem
using a multiple-scales-type WKBJ analysis, assuming the flow to be slowly varying in
the streamwise direction. Application of a suitable expansion in the small parameter
ε = 1/Re1/2, with Re the Reynolds number based on aerofoil chord, then allows
us to solve a succession of ordinary differential equations and find an asymptotic
expression for the global mode frequency and growth rate. We use as the basic state
flow both an analogue of the Goldstein (1930) wake (in which we suppose that the
flow at the trailing edge is a Falkner–Skan flow with negative pressure gradient) and
the genuine aerofoil wake obtained by integration of the boundary layer equations.

We start in §2 by performing the WKBJ analysis of the wake flow, and go on
to present the calculation of the specific steady flows under consideration in §3. We
describe our numerical results in §4, where we show that for both the aerofoil and the
Falkner–Skan profiles there exists a critical Reynolds number for global instability,
the value of which depends on the aerofoil thickness or pressure gradient. We also
describe a large-wavenumber expansion, which suggests that the double Blasius wake
profile may be locally absolutely unstable. Finally, we discuss the relevance of these
results to the physical problem at hand and make suggestions for further work on
this subject in §5.

2. Analytical results
2.1. Outer-scale analysis

We consider a thin uncambered aerofoil of chord length c∗ (the superscript denotes
dimensional quantities), lying in a two-dimensional incompressible viscous fluid of
kinematic viscosity ν∗, with a steady uniform flow of speed U∗∞ at infinity aligned
parallel to the aerofoil chord – see figure 1. Axes with origin at the aerofoil trailing edge
are introduced as shown, and the precise form of the aerofoil thickness distribution
will be described later. The Reynolds number based on the chord is

Re = U∗∞c
∗/ν∗, (2.1)

and we define the characteristic trailing-edge boundary layer thickness

δ∗TE = c∗ Re−1/2. (2.2)

All physical variables are now non-dimensionalized – lengths by δ∗TE , velocities by

U∗∞ and pressures by ρ∗∞U
∗
∞

2, where ρ∗∞ is the fluid density – and in what follows
non-dimensional quantities are unstarred. Our susbsequent analysis will be completed
in the limit of large Reynolds number, and to facilitate this we introduce the small
parameter

ε = Re−1/2, (2.3)

and consider the asymptotic limit ε� 1. In this limit, the steady flow past the aerofoil
will vary slowly in the streamwise direction (i.e. it is weakly non-parallel), and will
therefore depend on streamwise position only in terms of the ‘slow’ coordinate X = εx,
so that when a small unsteady perturbation is introduced on top of the steady flow
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Figure 1. Thin aerofoil in uniform stream, also showing the approximate behaviour of the wake
centreline velocity Uc(X).

we can write the total fluid velocity u as

u =

(
U (y;X) +

∂ψ′

∂y
, V (y;X)− ∂ψ′

∂x

)
. (2.4)

Here, ψ′ (x, y, t) is the streamfunction of the unsteady perturbation and (U,V ) is the
steady velocity.

Equation (2.4) is subsituted into the unsteady Navier–Stokes equations, and by
linearizing in the perturbation amplitude and eliminating the unsteady perturbation
pressure we obtain the evolution equation for ψ′ in the form[(

∂

∂t
+U

∂

∂x

)
∇2 − ∂2U

∂y2

∂

∂x

]
ψ′ + O

(
ε2|ψ′|, |ψ′|2

)
= 0. (2.5)

Following MHC93 the idea now is to look for the Green function, G (x, y, t), of (2.5)
by introducing the non-zero right-hand side Qδ (X −Xs), corresponding to a source
located on the wake centreline at the point Xs. In fact, we will be attempting to
determine the long-time behaviour of G (x, y, t), which as we shall see is typically
dominated by a single global mode of frequency ωG. We first take the time Fourier
transform of (2.5), with

Ĝ (x, y, ω) =

∫ ∞
−∞
G (x, y, t) eiωtdt, (2.6)

and then introduce the standard WKBJ approximation for the Green function,

Ĝ± ∼
[
Ĝ±0 + εĜ±1 + O

(
ε2
)]

exp

[
i

ε

∫ X

Xs

k±
(
X ′;ω

)
dX ′

]
, (2.7)

where the ± denote the solution upstream or downstream of the source; note that k±

will correspond to the k eigenvalues originating from the upper or lower half-planes
respectively. In order to evaluate the asymptotic expansion of Ĝ± we use the method
of multiple scales; by introducing the chain rule relation

∂

∂x
→ ∂

∂x
+ ε

∂

∂X
(2.8)

into (2.5), and then subsituting for Ĝ± from (2.7) we obtain an ordinary differential
equation to solve at each order in ε, as is described below.
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At O(ε0) we find that Ĝ0 must satisfy the Rayleigh equation

L±
{
Ĝ±0

}
= 0, (2.9)

L± {·} ≡
[(
k±U (y;X)− ω

)( ∂2

∂y2
− k±2

)
− k± ∂

2U

∂y2

]
{·} , (2.10)

the solution of which is

Ĝ±0 (y,X) = Ā
±
0 (X)φ±0 (y;X) , (2.11)

where φ±0 (y;X) satisfies the Rayleigh equation at each fixed X. The slowly-varying

amplitude function Ā
±
0 (X) should be determined at next order in ε by a secularity

condition which must be satisfied in order to ensure a uniformly bounded solution
for G. However, if the ω-contour in the time inversion of Ĝ has to be deformed past
a branch-point singularity in the ω-plane, where the group velocity ∂ω/∂k = 0, then
it will turn out that this secularity equation breaks down. For the absolutely unstable
wake profiles considered this indeed happens, and to avoid this a second scaling in
X must be introduced as described below.

2.2. Rescaling

The multiple-scales analysis described above yields at O(ε) the secularity condition

∂ω

∂k

±dĀ
±
0

dX
= −

[
1

2
d±kk

∂k±

∂X
+ d±kω

∂ω±

∂X

]
Ā
±
0 , (2.12)

which is very similar to equation (3.8) of MHC93, the differences being due to our
definition of the expansion parameter as ε = Re−1/2, compared to ε = 1/Re in their
paper. Here we retain as far as possible the same notation as MHC93, in which the
d† represent ratios of inner products introduced by the secularity condition. We shall
define dkk fully later on, while dkω , which we do not actually need for our problem,
can be defined in a similar way. As mentioned above, (2.12) clearly becomes singular
when ∂ω/∂k(k, X) is zero, and for the purposes of this analysis we shall suppose that
this occurs at the single streamwise position Xt, with corresponding frequency and
wavenumber ωt and kt respectively. The idea now is to introduce an inner scaling to
remove this singularity, and in order to do this we first expand the group velocity
about

(
kt, Xt

)
as

∂ω

∂k
(k, X) =

∂ω

∂k

(
kt, Xt

)
+
(
k − kt

) ∂2ω

∂k2

(
kt, Xt

)
+
(
X −Xt

) ∂2ω

∂X∂k

(
kt, Xt

)
+. . . . (2.13)

The point at which ∂ω/∂k vanishes corresponds to a saddle point in the complex

k-plane, in the neighbourhood of which ω − ωt ∼
(
k − kt

)2
, and hence the scalings

of the X derivatives of ω and k are given to leading order by the expressions

∂ω

∂X
∼ ω − ωt

X −Xt
(2.14)

∂k

∂X
∼
(
ω − ωt

)1/2

X −Xt
, (2.15)

and also, due to the dependence on the slow length scale,(
k − kt

) (
X −Xt

)
∼ ε. (2.16)
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Clearly (2.14) and (2.15) indicate that the right-hand side of (2.12) is dominated by

the ∂k/∂X term, since (ω − ωt)
1/2

is small. Also, for X close to Xt, the left-hand side
of (2.12) is dominated by the (k − kt)∂2ω/∂k2 term in (2.13), since (X − Xt) is small,
and the equation reduces to

(
k − kt

) dA0

dX
∼
(
ω − ωt

)1/2

X −Xt
A0, (2.17)

which, on substituting the scaling equation (2.16), becomes

ε

X −Xt

1

X −Xt
∼
(
ω − ωt

)1/2

X −Xt
, (2.18)

and hence

X −Xt ∼ ε

(ω − ωt)1/2
. (2.19)

For the aerofoil wake it will turn out that the turning point Xt is at the trailing
edge, so that in fact Xt = 0, but for the sake of generality we will keep Xt in our
analysis explicitly. In this region the basic-state flow will be given by the modified
Goldstein wake solution, in which the centreline velocity Uc is proportional to X1/3 to
leading order in X. It can be shown that for a wide range of wake profiles (Woodley
& Peake 1997) the frequency varies approximately linearly with Uc, and we shall show
that this is indeed true for our specific case in §4. Hence it follows that

ω − ωt ∼
(
X −Xt

)1/3
. (2.20)

Equations (2.19) and (2.20) can now be combined, and suggest that we should
introduce the inner variable

X̃ = ε−6/7
(
X −Xt

)
(2.21)

around the turning point, and this will be described in the next subsection.

2.3. Turning point analysis

In the light of the rescaling argument given above, we expand the flow variables
about X = Xt in the form

U(y;X) = U0(y;X) + ε2/7X̃
1/3
U1(y;X) + O(ε3/7),

ψ′ =
[
Φ̄0 + ε1/7Φ̄1 + ε2/7Φ̄2 + O

(
ε3/7
)] (

X̃, y
)
× exp

{
i

ε
kt0
(
X −Xt

)
− iωGt

}
,

ωG = ωt
0 + ε1/7ω̄1 + ε2/7ω̄2 + O

(
ε3/7
)
,


(2.22)

where we have replaced the general source location Xs with the turning point Xt.
The form of the expansion of the steady flow follows exactly from Goldstein’s wake
solution – the first term U0(y;X) is simply the velocity profile at the trailing edge,
and the second term includes the X1/3 dependence of the Goldstein solution. The new
form of the perturbation streamfunction follows directly from the expansion of (2.7)
about X = Xt, and in particular the linear factor in the exponential arises from the
expansion of the WKBJ phase function.

The frequency ωG is the (unknown) global-mode frequency, which will be deter-
mined as part of our solution. The first term in ωG is the absolute instability frequency
of the steady wake profile at Xt, and represents the long-time limit behaviour of a
parallel flow U(y;Xt), with the higher-order terms representing corrections to this to
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allow for the non-parallel nature of the flow. This first term arises due to the need
to deform the WKBJ integration contour through the turning point in the complex
X-plane, which in our case is a turning point with ∂ω/∂X 6= 0, i.e. a boundary
contribution, since Xt = 0. This point is more fully described in MHC93, and of
course follows from the fact that at O(ε0) the wake flow is strictly parallel, so that the
long-time limit of its response corresponds exactly to that of the profile at X = Xt,
which, for the absolutely unstable profiles considered, is given by the local absolute
instability. In fact, we can define a local absolute instability frequency at each X, say
ω0(X), simply by finding the appropriate branch point of the parallel-flow dispersion
relation at X (for a very full description see Huerre & Monkewitz 1990), so that
ωt

0 = ω0(X
t). It will be seen later that Im[ω0(X)] > 0 for a finite range of X > 0

in our aerofoil wake, corresponding to a pocket of locally absolutely unstable flow;
whether or not this leads to a globally unstable flow (i.e. Im[ωG] > 0) depends on the
correction terms ω̄1,2, and this will be discussed later.

Equation (2.22) is susbtituted into (2.5) as before, and now using the chain rule
relation

∂

∂x
→ ∂

∂x
+ ε1/7 ∂

∂X̃
(2.23)

and equating powers of ε, we find that at O(ε0) we have the equation[(
−iωt

0 + iU0

∂

∂x

)(
∂2

∂y2
− k2

)
− ∂2U0

∂y2

∂

∂x

]
Φ̄0 = 0, (2.24)

and so recover the standard Rayleigh equation

Lt
{
φt0
}

= 0, (2.25)

where superscripts t denote evaluation at the turning point Xt. Thus Φ̄0 is given by

Φ̄0

(
X̃, y

)
= Ā0

(
X̃
)
φt0 (y) , (2.26)

where Ā0

(
X̃
)

is a slowly varying amplitude function which must be determined at
higher order.

At O(ε1/7) we obtain

Lt
{
Φ̄1

}
= iLt

k

{
φt0
} dĀ0

dX̃
− ω̄1Lt

ω

{
φt0
}
Ā0, (2.27)

where the subscripts on theLt denote partial differentiation of the operator defined by
(2.10) with respect to the subscripted variable (explicit expressions for these operators
are given in MHC93). We now take the inner product of (2.27) with the homogeneous
solution of the adjoint Rayleigh equation, and obtain the solvability condition

iLt
k {φt0}

Lt
ω {φt0}

dĀ0

dX̃
− ω̄1Ā0 = 0, (2.28)

where the operator L is defined by

L {·; k, ω,X} ≡
∫ ∞

0

L{·; k, ω,X} φ0 (y;X)

kU (y;X)− ωdy, (2.29)

and the subscripts on the L in (2.28) again denote differentiation with respect to the
subscripted variable. We note that it can be shown (see Appendix A of MHC93) that

∂ω

∂k
+

Lk {φ0}
Lω {φ0}

= 0, (2.30)
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and evaluating (2.30) at the turning point Xt where ∂ω/∂k = 0 and substituting into
(2.28), we find that

ω̄1 = 0. (2.31)

The leading-order non-parallel correction to the global mode frequency is therefore
identically zero. Returning to (2.27), we now see that

Φ̄1 = Ā1

(
X̃
)
φt0 (y) + i

dĀ0

dX̃
φt1k (y) , (2.32)

where Ā1(X̃) is an unknown amplitude function and φt1k(y) is a solution of the
inhomogeneous Rayleigh equation

Lt (φ) =Lt
k

(
φt0
)
. (2.33)

To find the slowly varying amplitude function Ā0(X̃) we need to go to O(ε2/7),
where we obtain the equation

Lt
{
Φ̄2

}
= iLt

k

{
φt0
} dĀ1

dX̃
−
[
Lt

k

{
φt1k
}
− 1

2
Lt

kk

{
φt0
}] d2Ā0

dX̃
2

−
[
ω̄2Lt

ω

{
φt0
}

+ X̃
1/3L1t

X

{
φt0
}]
Ā0, (2.34)

where we have introduced a new operator L1
X that represents the analogue of the

X-derivative Rayleigh operator, defined as

L1
X {·; k, ω,X} =

[
kU1

(
∂2

∂y2
− k2

)
− kU1yy

]
{·; k, ω,X} . (2.35)

Taking the inner product of (2.34) as before and dividing through by Lω {φt0}, we
now obtain the modified secularity condition

iLt
k {φt0}

Lt
ω {φt0}

dĀ1

dX̃
− 1

2
dtkk

d2Ā0

dX̃
2
−
[
ω̄2 − d1t

XX̃
1/3
]
Ā0 = 0, (2.36)

where d1t
X is given by

d1t
X = −L1t

X {φt0}
Lt
ω {φt0}

, (2.37)

and

dtkk =
2Lt

k

(
φt1k
)
− Lt

kk

(
φt0
)

Lt
ω

(
φt0
) . (2.38)

It can then easily be shown, using the above definition of Lt
ω and the fact that φt0

must satisfy the Rayleigh equation (2.10), that

Lt
ω

{
φt0
}

= −k
∫ ∞

0

Uyy

(
φt0
)2

kU − ω dy, (2.39)

which on substitution into (2.37) above gives

d1t
X =

∫ ∞
0

[
kU1Uyy

kU − ω −U1yy

] (
φt0
)2

kU − ωdy∫ ∞
0

Uyy

(
φt0
)2

kU − ω dy

. (2.40)
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Now applying the condition that the complex group velocity ∂ω/∂k is zero at Xt in
(2.30), we see that the term involving Ā1 in the secularity condition (2.36) vanishes,
so that the secularity condition reduces to an ordinary differential equation for the
unknown amplitude Ā0 in the form

d2Ā0

dX̃
2

+
2
(
ω̄2 − d1t

XX̃
1/3
)

dtkk
Ā0 = 0. (2.41)

Finally, it proves convenient to introduce into (2.41) a rescaling of the form

u =

(
2d1t

X

dtkk

)3/7

X̃, (2.42)

to give the ‘Airy-like’ equation

d2Ā0

du2
+
(
a− u1/3

)
Ā0 = 0, (2.43)

where a is given by

a =
2ω̄2

dtkk

(
2d1t

X

dtkk

)−6/7

. (2.44)

The boundary conditions for (2.41) are

Ā0 (u = ∞) = 0 (2.45)

Ā0

(
u = −

(
2d1t

X

dtkk

)3/7

ε−6/7Xt

)
= 0, (2.46)

and correspond to the requirement that the mode amplitude is zero at the trailing
edge X = 0 and at downstream infinity. The former condition is the unsteady Kutta
condition, requiring that the normal velocity is zero at the trailing edge, X = 0,
and hence that Ā0(0) = 0. This condition may also be interpreted in terms of the
assumption that the aerofoil has no effect on the development of the global mode
other than in setting up the steady wake profiles – this is the usual approach
taken in wake stability problems, and is supported by the numerical evidence of
Triantafyllou & Karniadakis (1990). The branch cut in (2.42) is chosen so that the
integration contour along the real X-axis can be deformed into the complex u-plane
without changing the asymptotic behaviour at infinity, and by defining the branch
cuts as in the Appendix we obtain a self-consistent way of performing transformation
(2.42), which finally results in a unique definition of ω̄2.

For our problem, we note that the trailing-edge profile has a k saddle point, and
hence the turning point is actually at the trailing edge, i.e. Xt = 0. Our results showed
no indication of any other turning points on the streamwise axis; one would expect
this due to the monotonic increase of the centreline velocity, and corresponding
decrease of the locally parallel growth rate, downstream of the trailing edge. Hence
the boundary conditions reduce to

Ā0 (u = ∞) = 0, (2.47)

Ā0 (u = 0) = 0. (2.48)

Equations (2.43), (2.47) and (2.48) thereby define an eigenvalue problem for a which
can be solved to determine the correction ω̄2 to the global mode frequency. This
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correction depends on the precise form of the steady wake in the neighbourhood
of the trailing edge through terms such as d1t

X/d
t
kk in (2.42), and in the next section

we will proceed to calculate ω̄2 for our aerofoil wake. We note here, however, that
no inference about the sign of Im[ω̄2] can be made at this stage, and indeed it will
turn out that both stabilizing and destabilizing non-parallel corrections are possible,
depending on the aerofoil thickness.

3. Basic-state flow
3.1. Outer flow and aerofoil boundary layer calculation

For definiteness we suppose that the aerofoil is an uncambered Zhukovski aerofoil,
although it should be emphasized that any standard thickness distribution could
equally well be used. The inviscid flow past a Zhukovski aerofoil lying in the complex
z-plane is well known, and can be found by applying the transformation

z = ζ + a2/ζ (3.1)

to the cylinder |ζ + b| = a + b in the ζ-plane (Acheson 1990). For thin aerofoils it
follows that a is approximately equal to the quarter-chord length, giving the maximum
aerofoil thickness to chord ratio of t = 3

√
3b/4a. This outer inviscid flow provides

the slip velocity on the aerofoil surface, and hence to find the boundary layer flow we
integrate the boundary layer equations downstream from the leading-edge stagnation
point, with the inviscid slip velocity calculated above as the outer boundary condition,
using a Crank–Nicholson method described in Panton (1984). The solution for the
steady boundary layer flow will of course not remain valid if the flow separates; we
were therefore careful to test for separation at each step in the downstream marching,
and found that the flow remains attached all the way to the trailing edge provided
b/a 6 0.0351, corresponding to a thickness to chord ratio of around 4.5%. It should
also be noted that, since the Zhukovski aerofoil has a cusped trailing edge, the flow
does not then separate at the trailing edge either.

3.2. Wake-flow calculation

Once we have calculated the steady boundary layer profile at the trailing edge, we
must then ‘march’ the solution downstream of the trailing edge to find the steady
wake flow. This was done using the method formulated by Smith (1974) for handling
the discontinuity in boundary conditions at the aerofoil trailing edge, which is fully
described in the context of wake flow by Daniels (1976), and only the briefest
explanation is required here. We introduce the new streamwise coordinate ξ = X1/3,
to fit in with the anticipated scaling of the wake close to the trailing edge as described
by Goldstein (1930), and since the aerofoil is uncambered and symmetric we restrict
attention to the region y > 0. We then split the wake into two regions – an inner
region (I) in which y = O(ξ), with grid points spaced evenly in ξ and y/ξ, and an
outer region (II), for y = O(1), with grid points spaced evenly in ξ and y. In region
II the initial condition at ξ = 0 is provided by the boundary layer flow at the trailing
edge, while at ξ = 0 the flow in region I is driven by the trailing-edge shear stress and
can be found in terms of a similarity solution (Daniels 1976). The solutions in these
two regions are then marched downstream, with the streamfunction and its derivatives
matched together at the boundary between regions I and II. At the outer edge of
region II we match the streamwise velocity onto the outer wake velocity predicted by
the inviscid solution, while on the centreline y = 0 we impose zero normal velocity
since the steady flow is symmetric. In our calculations we used ∆ξ = 0.02, with the
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outer edge of region I at y/ξ = 5 with mesh size 0.1, and the outer edge of region
II at y = 10 with mesh size 0.1. We note here that after each downstream marching
step the number of mesh points in region I must be reduced by one, but full details
are given in Smith (1974) and Daniels (1976). For b/a = 0, i.e. the flat-plate (Blasius
boundary layer) case, our numerical solution agreed exactly with the values presented
by Daniels (1976).

As a preliminary to analysing the genuine aerofoil wake, we also considered the
case in which the boundary layer at ξ = 0 has simply a Falkner–Skan profile with
negative pressure gradient, which may be representative of the conditions found in
aero-engine compressors, an area which provided some of the motivation for this
investigation. The streamfunction at ξ = 0 is then

U∞L

Re
f

(
y∗

LRe1/2

)
, (3.2)

where f (η) satisfies the Falkner–Skan equation

f′′′ + 1
2

(m+ 1) ff′′ + m
(

1− f′2
)

= 0. (3.3)

We considered negative m in the range −0.09 6 m < 0, corresponding to an adverse-
pressure-gradient, but unseparated, boundary layer. This profile is then marched
downstream from the trailing edge as described above.

4. Numerical method and results
Here we present a range of numerical results obtained by solving the equations

presented in §2. In §4.1 we consider the leading-order term ωt
0 in the global mode

frequency, as calculated using the locally parallel-flow approximation at ξ = 0, while
in §4.2 we investigate the effects of the non-parallel correction term ω̄2. We consider
both the genuine aerofoil wake and the Falkner–Skan model wake – it will turn out
that the stability properties are qualitatively very similar due to the fact that the
trailing-edge profiles obtained by integrating the boundary layer equations all the
way from the leading edge are quite well approximated by Falkner–Skan profiles, at
least in terms of the position and strength of the inflection points.

The local Rayleigh eigenvalue problem was solved by a straightforward fourth/fifth
order Runge–Kutta method, together with a combination of a modified Powell hybrid
method (both from the NAG Fortran library) and a complex contour integral method
for the root finding. We found that solving the pressure form of the Rayleigh equation,
that is

p′′ − 2U ′p′

U − ω/k − k
2p = 0, (4.1)

where p(y) exp(ikx−iωt) is the unsteady pressure perturbation, gave better results than
solving the streamfunction form (2.10), as it allows us to lower the differentiability
requirements on U(y). This is important when the wake is close to the double Blasius
profile, for which the stability characteristics are very sensitive to the derivatives of
the profile. Of course the eigenvalues of the two formulations are the same, and the
resulting pressure eigenfunctions may be easily converted into streamfunction form
using the y momentum equation. We also used a contour integral method for the
numerical differentiation of ω with respect to k for the saddle point location, which
has the advantage of conserving the precision of ω. We found that this method gave
good precision with relatively few integration points, provided that the contour did
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Figure 2. Trailing edge (ξ = 0) velocity profiles for m = 0,−0.03,−0.06,−0.08 and −0.09.

not pass too close to any poles or zeros of the function. We also used a straightforward
linear extrapolation procedure to step the parameter, either m (Falkner–Skan profiles)
or t (Zhukovski aerofoil profiles) from one profile to the next, which, together with
the contour integral methods, allowed rapid location of the saddle points given a
suitable guess at the answer for the first profile.

4.1. Leading-order behaviour

Figure 2 shows the trailing-edge velocity profiles for a range of the Falkner–Skan
pressure gradient parameter, m. We see that the effect of making m less negative is
to move the inflection point further in towards the centreline, approaching the non-
inflectional double Blasius profile in the limit m ↗ 0, as can be seen more clearly in
figure 3 which shows the behaviour of the second derivative of the velocity for three
different values of m. Exactly the same behaviour can be observed in the genuine
aerofoil profiles, where increasing the aerofoil thickness is equivalent to making m
more negative.

We calculated the leading-order eigenvalues, ω0 and k0, as described above, but
before proceeding one must check that the saddle-point eigenvalue k0 satisfies the
Briggs–Bers (Briggs 1964; Bers 1975, 1983) pinching criterion, in which the two k-
roots forming the saddle coalesce from opposite sides of the wavenumber inversion
contour as the imaginary part of ω is reduced down to zero, thereby guaranteeing
that the solution is causal. A sample contour plot of ω(k) for the Falkner–Skan profile
ξ = 0, m = −0.02 is shown in figure 4, demonstrating that the two roots do indeed
originate from the upper and lower halves of the k-plane as required. It was checked
that this remains the case for all the other velocity profiles used.

Figure 5 shows the growth rate behaviour, that is ω0,i(X), close to the trailing
edge. The growth rate appears to be linear in ξ = X1/3 close to ξ = 0, indicating
that the scaling introduced in (2.20) is indeed valid. Note also that there is a pocket
of locally absolute instability (ω0,i > 0) in ξ > 0 for m < 0, and that the size of
this region increases as m becomes more negative; equivalently, the genuine aerofoil
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Figure 3. Second derivative of velocity against y for m = 0, −0.05 and −0.09, showing the position
of the inflection point.
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Figure 4. Contours of constant Re[ω0] (dashed lines) and Im[ω0] (solid lines) in the complex
k-plane for the Falkner–Skan profile ξ = 0, m = −0.02. Thick arrows denote the locus of the roots
k± for ωr constant, ωi ↘ ω0,i.

wake has a pocket of absolute instability, the size of which increases with increasing
aerofoil thickness. In figures 6 and 7 the local absolute growth rate is plotted against
the pressure gradient parameter and thickness ratio respectively for fixed ξ = 0.
Although these graphs do show that the growth rate decreases significantly as either
m or the thickness ratio t approach zero, they also seems to indicate that the growth
rate is not actually tending to zero at m, t = 0, but we shall return to this point
in §5. It was found that for small m or t, the correct saddle point for large ξ was
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Figure 6. Trailing-edge growth rate against pressure gradient parameter, m,
for the Falkner–Skan wake.

difficult to find, and we therefore used a parameter stepping procedure using m as
the parameter and keeping ξ = 0 fixed. Figure 8 shows the locus of the trailing-edge
saddle point in the complex wavenumber plane, as m varies from −0.09 to −0.01. It is
the rapid variation in the position of k0 as m approaches zero that causes the problems
associated with finding the saddle – this is due to the movement of the inflection
point in towards the wake centreline (see figure 3) which causes the eigenfunction to
become more localized in the centre of the wake, as indicated in figure 9. Very similar
results are obtained for the Zhukovski aerofoil case.

The real part of the global mode frequency for the Falkner-Skan trailing-edge
profiles is plotted in figure 10, where it can be seen that the scaled frequency varies
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Figure 7. Trailing-edge growth rate against thickness ratio, t, for the Zhukovski aerofoil wake.
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Figure 8. Locus of the saddle point k0 in the complex plane as m tends to zero from below.

only weakly with m. This result could be regarded as quite surprising, given the large
effect that the adverse pressure gradient has on the growth rate. However, the real
part of the frequency in fact is much more dependent on the overall width of the
wake, which remains largely unchanged as m varies, while in contrast the growth rate
depends crucially on the shape of the wake near the centreline, which is very sensitive
to the value of m.

4.2. Correction term

For m in the range −0.09 < m < 0, we can calculate the O(ε2/7) frequency correction,
ω̄2, from the eigenvalues of the problem defined by (2.43), (2.47) and (2.48). The
solutions of this problem, Ā0, are shown in figure 11 for the three smallest eigenvalues
– in fact one might expect an infinite spectrum of eigenvalues for a, with a different
global mode eigenfunction corresponding to each zero of the ‘Airy-like’ function.
However, in what follows we shall concentrate on only the first mode, which has
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Figure 10. Real part of the leading-order global mode frequency, ω0,r against pressure gradient
parameter m, scaled with the wake displacement thickness δ and 1/e-width be.

a = 1.62, since this mode will give rise to the lowest critical Reynolds number for an
instability for any given aerofoil thickness or pressure gradient.

From figure 12 it may be seen that for the Falkner–Skan wake the imaginary part
of the frequency correction is positive for m less than some critical value, around
−0.035. In this range, the total global mode frequency ωG ∼ ω0 + ε2/7ω̄2 has a
positive imaginary part for all ε > 0, and the flow is thus globally unstable for all
Reynolds numbers. For m > −0.035, however, the frequency correction ω̄2 has a
negative imaginary part and is stabilizing, while the leading-order frequency ω0 still
has a positive imaginary part. In this case we can suggest that there exists a critical
value of ε, and hence of Re, leading to a neutrally globally stable mode. This critical
Reynolds number, for which the imaginary parts of the first two terms balance, is
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Figure 12. Imaginary part of the frequency correction ω̄2 against pressure gradient parameter m.

given by the expression

Recrit =

(
−ω̄2,i

ω0,i

)7

; (4.2)

for Re > Recrit, the flow is globally unstable, but for Re < Recrit the O(ε2/7) correction
is large enough to render the flow globally stable. There is extensive experimental
evidence (for example Schumm, Berger & Monkewitz 1994) that the wakes of bluff
bodies of various aspect ratios undergo such bifurcations to globally unstable modes
at sufficiently high Reynolds numbers, although as far as we are aware there is no
corresponding evidence for this in thin flat-plate wakes.

It should be noted that the Reynolds number variation has been included only
in the sense of changing the non-parallel effect on the correction term; we have not
included the viscous effects in the leading order growth rate – for this we would
require a full Orr–Sommerfeld analysis for the leading-term. Similarly, it might be
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expected that the viscous triple-deck region close to the trailing edge would exhibit
a strong influence on the stability properties. The effects though are unknown at
present, and inclusion of them into the calculation would appear to be a daunting
task, due to the non-parallel nature of the flow in this region.

Furthermore, due to the seventh power appearing in (4.2), the critical Reynolds
number predicted is very sensitive to the calculation of both the leading-order growth
rate, ω0,i and the correction growth rate ω̄2,i; hence the predictions can only really
be used as order-of-magnitude estimates, given that it is not possible in many cases
to calculate ω̄2 to very high precision. This large power also manifests itself in that
relatively large Reynolds numbers are required for ε to be reasonably small. Of
course, this is an asymptotic theory based on the limit of large Reynolds number, and
how small ε needs to be to ensure sufficient accuracy of the results is unknown. What
we can say, regarding figure 14, is that the critical Reynolds number increases very
rapidly for thickness/chord ratios of less than the critical value of around 3%, and
hence ε is reasonably small at almost all critical Reynolds numbers shown in figure
14. The flow is thus likely to be globally stable for all practical Reynolds numbers
provided the thickness/chord ratio is reasonably smaller than the critical value.

The results for the Zhukovski aerofoil are qualitatively the same; the graph of
imaginary part of the frequency correction against aerofoil thickness parameter is
given in figure 13, along with the corresponding critical Reynolds number plot as
defined by (4.2) in figure 14.

4.3. Large-k asymptotics for the double Blasius wake

In the limit as m ↗ 0 for the Falkner–Skan wake profiles, or equivalently as t ↘ 0
for the Zhukovski aerofoil profiles, the modulus of the turning-point wavenumber
increases significantly (figure 8) and the eigenfunction becomes more oscillatory in
the centre of the wake (figure 9), causing difficulties in the numerical solution of
the Rayleigh equation and subsequent location of the k saddle points. In order to
examine this more carefully, we extend Papageorgiou & Smith’s (1989) analysis of the
asymptotic limit of large k for the spatial stability problem to include the case where
both the freqeuncy and wavenumber are complex. To do this, one simply needs to
solve the problem treated in Appendix A of their paper, that is solve the boundary
layer equations for asymptotically large k in the wake, and only a brief outline need
be presented here.
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Starting from the Rayleigh equation(
U − ω/k

) (
ψ′′ − k2ψ

)
−U ′′ψ = 0, (4.3)

we expand the dependent variables in terms of the wavenumber k, with |k| � 1, as

ω = c0k + c1 +
c2

k
+
c3

k2
+
c4

k3
+ . . . , (4.4)

U =
λY

k
+
λ4Y

4

k4
+ . . . , (4.5)

ψ = ψ0 +
ψ1

k
+
ψ2

k2
+
ψ3

k3
+ . . . , (4.6)

where Y = |k|y is the scaled cross-stream coordinate. Here, the coefficients λ and λ4

are determined from the expansion of the Goldstein wake close to the wake centreline,
and are given by Goldstein (1930) as λ ≈ 0.332 . . . and λ4 = −(1/48)λ2.

On expanding and solving for successive powers in k, we obtain the results given
by Papageorgiou & Smith (1989) for the coefficents in the ω-expansion, that is

c0 = c2 = c3 = 0, (4.7)

c1 = λ, (4.8)

c4 =
λ

2A0

[
2A0AG − 4SIa +

4iπS

e2

]
, (4.9)

where A0 is the amplitude of the leading-order term in the streamfunction expansion(
ψ0 = A0e

−|Y |), S = 6λ4A0/λ, AG is the (constant) Goldstein displacement thickness
and Ia is a definite integral arising from the matching of the streamfunction across
the critical layer Y = 1; we have

Ia =

∫ ∞
0

W 2e−2WdW

W − 1
, (4.10)

evaluated in a Cauchy principal-value sense.
Using these results, we may now plot the imaginary part of ω against complex k, to

show that the double Blasius profile could be absolutely unstable provided the saddle
point lies in the correct region of the k-plane, as in figure 15. Overlaying the path
of the saddle point, determined numerically, as the profile (either Falkner–Skan or
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Figure 15. Imaginary part of ω for the double Blasius profile over the fourth quadrant of the
k-plane, and the locus of the saddle point for varying pressure gradient.

Zhukovski aerofoil type) approaches the double Blasius case, we see that the saddle
point is definitely moving in the direction which takes it further into the region where
the imaginary part of ω is positive. This also seems to indicate at least qualitative
agreement with figures 6 and 7, which show the imaginary part of the leading-order
frequency starting to increase as the profiles approach the double Blasius case. Of
course, to calculate the position of the saddle point using the large-k asymptotic
analysis, we would need to go to at least one more order in k, and we are currently
investigating this problem.

5. Concluding remarks
In this paper we have used a multiple-scales-type expansion in the limit of large

Reynolds number to determine the long-time limit behaviour of an aerofoil wake.
We have determined the global instability frequency to second order in our small
expansion parameter ε1/7, thus enabling us to calculate the boundaries between dif-
ferent types of long-time behaviour. The results indicate that for a Zhukovski aerofoil
the wake is globally unstable to O(ε2/7), provided that the maximum thickness/chord
ratio, t, is greater than 3%. For each t < 3%, there exists a critical Reynolds number
below which the wake is globally stable. Similarly, for the Falkner–Skan wake, the
wake stability depends on the adverse-pressure-gradient parameter, m, where again
there exists a critical value of m = −0.035. For more severe adverse-pressure-gradients
the wake is globally unstable for all Reynolds numbers, while for weaker ones there
exists a critical Reynolds number below which the flow is globally stable to the
asymptotic order calculated here.

One motivation for studying aerofoil wake stability is the phenomenon of acoustic
resonance in gas turbine compressor stages, where it is thought that vortex shedding
from a poorly performing blade row is a major factor in the occurrence of potentially
damaging resonance events. Here we have taken as our model the vortex shedding
from both a single flat plate in a flow with an adverse pressure gradient, or, similarly,
the wake of a thin Zhoukowski aerofoil in a uniform stream, as a first step towards
predicting the vortex-shedding behaviour of such a real system. The model can easily
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be extended to the case of a cascade of aerofoils, by using the cascade periodic
boundary conditions for the numerical solution of equation (2.9). It can be shown
(Woodley & Peake 1997) that the influence of cascade boundary conditions is very
small unless the wake thickness is about half the inter-blade spacing, and although this
is very unlikely in experimental set-ups of non-rotating cascades, it could easily occur
in rotating compressor stages. Similarly, in a real compressor the flow is compressible,
and although previous calculations indicate that the compressibility has only a small
effect on the local absolute instability properties, the consequences for the correction
terms are unclear and are currently under investigation.

In cases where the flow is globally unstable, we expect the oscillation to grow
exponentially in time until nonlinear effects become important, at which point this
current model breaks down and a weakly nonlinear analysis would be appropriate,
in order to determine the frequency shift of the oscillation as it enters the nonlinear
regime. At this point, it might also be appropriate to go into the fully nonlinear
regime, using a Stuart–Landau model, which has been shown by Schumm et al.
(1994) to apply very well to vortex shedding behind a body with a blunt trailing edge.

The authors would like to thank Dr S. J. Cowley for helpful conversations and
to acknowledge the support of Rolls-Royce plc and the Engineering and Physical
Sciences Research Council.

Appendix. Branch cuts in §2
We now consider how to define the branch cuts in the eigenvalue problem at the

end of §2. For large X̃, substituting Ā0(X̃) = exp[αX̃
β
(1 + . . .)] into (2.41) gives

α2β2X̃
2(β−1)

+ αβ (β − 1) X̃
β−2 − 2d1t

X

dtkk
X̃

1/3
= 0 , (A 1)

and comparing powers of X̃ we see that β = 7
6

is the only value that gives a balance in
the equation to leading order, and so we get the following equation for the coefficient
α:

49

36
α2 − 2d1t

X

dtkk
= 0, (A 2)

and hence

α = ±6

7

(
2d1t

X

dtkk

)1/2

. (A 3)

For Ā0(X̃) to remain exponentially small at infinity as we deform the contour off
the positive real X̃-axis, we require that

Re

[(
36c

49

)1/2
]
< 0 (A 4)

where, for convenience, c = 2d1t
X/d

t
kk . As the pressure gradient parameter m changes

over the range −0.09 < m < 0, c moves in the complex plane as shown in figure 16. We
thus take the branch cut to lie in the right-hand half-plane, to avoid discontinuities
in ω̄2.

We now let X̃ = Reiθ and c = Seiφ. In the X-plane, we place the branch cut on
the aerofoil chord along the negative X̃-axis. Together with the branch cut shown in
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figure 16 this restricts θ and φ to the ranges −π < θ < π and 0 < φ < 2π. It should
be noted that at the point where c crosses the negative real axis the real part of c1/2

changes sign, and hence one must take account of this when taking the plus or the
minus sign in (A 3). Since the imaginary part of c is zero at this point, neither solution
of (2.41) decays as X̃ tends to infinity. This change of behaviour only takes place
though when m is large and negative: for m in the range −0.089 < m < 0, c lies in
the 2nd quadrant and the problem is well behaved; when c lies in the 2nd quadrant,
Re[c1/2] > 0. Hence we must take the minus sign in (A 3), to give the asymptotic
behaviour

Ā0 ∼ exp
[
− 6

7
c1/2X̃

7/6
]

(A 5)

as X̃ → +∞ along the real axis. In order to deform the contour off the real X-axis in
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such a way that Ā0 remains bounded, we now require that

Re
[
c1/2X̃

7/6
]
> 0, (A 6)

and hence that

− π

2
<
φ

2
+

7θ

6
<
π

2
. (A 7)

Substituting φ = π− δ, where 0 < δ < π/2, we find that θ should lie in the range

− (6π/7) + (3δ/7) < θ < (3δ/7), (A 8)

which, as should be expected, includes the positive real axis θ = 0. Note that the
substitution given by (2.42) gives the argument of X as

θ = −(3π/7) + (3δ/7), (A 9)

as shown in figure 17. Solving (2.43) for a then gives us the O(ε2/7) frequency correction
ω̄2 as

ω̄2 = d1t
X

(
dtkk
2d1t

X

)1/7

a . (A 10)

Hence, we have shown that by defining the branch cuts as above we obtain a self-
consistent way of performing the transformation, and which results in a unique
definition of ω̄2.
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